9.0 PUBLIC FACILITIES AND SERVICES ELEMENT
9.0 PUBLIC FACILITIES AND SERVICES ELEMENT

9.1 PURPOSE OF THE ELEMENT

The Public Facilities and Services Element is included to identify issues and establish policy related to Water, Sewer, Storm Drainage/Flooding, Solid Waste, and Schools. The ability of the City to provide necessary infrastructure required to serve properties within the Urban Limit Line is an important factor in regulating orderly growth in the City. This element establishes the limits of the City in providing the necessary infrastructure to accommodate the growth rate policies and maintain satisfactory levels of service in the City.

9.2 WATER

Water Supply and Storage

The City’s main source of water is derived from Bell Canyon Reservoir, a 2,400-acre foot (AF), untreated water reservoir which gathers runoff from a 3,600-acre watershed located northeast of the City. During normal years, when rainfall exceeds 24 inches, the reservoir spills at elevation 422 MSL. Between 1980 and 1992 the watershed produced sufficient runoff to fill eight times. The average annual yield over the same period was about 1,400 AF. During the 1986/87 drought the reservoir reached 68% (1,600 AF) of full capacity, after the winter rains.

In 1992, the Stonebridge Well was developed near the Napa River at Pope Street and connected to the distribution system. The 400 gallon-per-minute (gpm) well can supply supplemental treated water up to 360 AF per year at 75% of production capacity. The ground water is filtered to remove iron and manganese, and disinfected with chlorine. Sixty percent of the City’s non-irrigation season demand can be supplied by the Stonebridge Well.

Treated water storage is presently limited to a 1.4 million gallon (MG) tank at the treatment plant, and several smaller tanks above Meadowood resort. Storage provides less than 50 percent of the peak day demand which normally occurs during crush in September, when wineries are in full operation. Emergency supplies for fire fighting needs are currently limited to the available storage and plant output which has a 4.3 million gallons per day (MGD) design capacity.

Consumption of treated water has increased steadily since 1965, as shown in Table 9-1. It is interesting to note that annual consumption has leveled out in the last decade and, in fact, decreased somewhat since 1988. This is probably due to several factors including higher water rates, voluntary conservation practices, more accurate metering and reduced system losses. Mandatory water restrictions were in effect during short periods in 1987, 1988, 1989 and 1991 due to low water levels in Bell Canyon Reservoir from the ongoing drought.
TABLE 9-1

HISTORICAL WATER CONSUMPTION
(AF/Year)

<table>
<thead>
<tr>
<th>Year</th>
<th>Consumption</th>
<th>Year</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>974</td>
<td>1979</td>
<td>1240</td>
</tr>
<tr>
<td>1966</td>
<td>1108</td>
<td>1980</td>
<td>1599</td>
</tr>
<tr>
<td>1967</td>
<td>923</td>
<td>1981</td>
<td>1516</td>
</tr>
<tr>
<td>1968</td>
<td>1016</td>
<td>1982</td>
<td>1254</td>
</tr>
<tr>
<td>1969</td>
<td>954</td>
<td>1983</td>
<td>1283</td>
</tr>
<tr>
<td>1970</td>
<td>1077</td>
<td>1984</td>
<td>1347</td>
</tr>
<tr>
<td>1971</td>
<td>1164</td>
<td>1985</td>
<td>1492</td>
</tr>
<tr>
<td>1972</td>
<td>1258</td>
<td>1986</td>
<td>1625</td>
</tr>
<tr>
<td>1973</td>
<td>1163</td>
<td>1987</td>
<td>1619*</td>
</tr>
<tr>
<td>1974</td>
<td>1168</td>
<td>1988</td>
<td>1644*</td>
</tr>
<tr>
<td>1975</td>
<td>1162</td>
<td>1989</td>
<td>1438*</td>
</tr>
<tr>
<td>1976</td>
<td>1449</td>
<td>1990</td>
<td>1576</td>
</tr>
<tr>
<td>1977</td>
<td>923</td>
<td>1991</td>
<td>1300*</td>
</tr>
</tbody>
</table>

* Mandatory water restrictions in effect during February & March.

Distribution System

The distribution network covers a large area extending from Lodi Lane, 2 miles north of town, to Niebaum Lane, 3 miles south of town (see Figure 9.1). At the extremities of the service area pipe sizes are normally 2" to 4" in diameter causing marginal flows and low pressures on peak summer days. In the original town site water mains are undersized and cannot supply larger flows needed for fire fighting purposes. A program is presently underway to upgrade these mains and provide better circulation by creating looped networks in place of existing dead end mains. Some of the perimeter mains outside the City limits cannot serve new customers according to City ordinance.

The St. Helena Water Enterprise meters water to over 2,100 locations including 2,760 residential customers and 15 wineries. Table 9-2 shows the annual water demand according to customer class from 1987-1992. Over this 5-year period most of the customers’ water consumption has remained fairly constant except for outside industrial and commercial users who have increased their use significantly.

Since implementing a service lateral and meter replacement program in 1989 unaccounted-for losses have declined below 10 percent of total treated water.
TABLE 9-2
WATER CONSUMPTION BY CLASS OF USER
(AF/Year)

<table>
<thead>
<tr>
<th>Year</th>
<th>Inside</th>
<th></th>
<th></th>
<th>Outside</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Residential</td>
<td>Comm/Ind.</td>
<td></td>
<td>Residential</td>
<td>Comm/Ind.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987/88</td>
<td>800 (50%)</td>
<td>493 (31%)</td>
<td></td>
<td>208 (13%)</td>
<td>95 (6%)</td>
<td></td>
<td>1600</td>
</tr>
<tr>
<td>1988/89</td>
<td>773 (50%)</td>
<td>416 (28%)</td>
<td></td>
<td>217 (14%)</td>
<td>129 (8%)</td>
<td></td>
<td>1537</td>
</tr>
<tr>
<td>1989/90</td>
<td>788 (53%)</td>
<td>352 (24%)</td>
<td></td>
<td>208 (14%)</td>
<td>137 (9%)</td>
<td></td>
<td>1488</td>
</tr>
<tr>
<td>1990/91</td>
<td>752 (51%)</td>
<td>386 (26%)</td>
<td></td>
<td>187 (14%)</td>
<td>137 (9%)</td>
<td></td>
<td>1463</td>
</tr>
<tr>
<td>1991/92</td>
<td>709 (52%)</td>
<td>386 (28%)</td>
<td></td>
<td>153 (11%)</td>
<td>119 (9%)</td>
<td></td>
<td>1368</td>
</tr>
<tr>
<td>Avg.</td>
<td>767 (51%)</td>
<td>407 (27%)</td>
<td></td>
<td>193 (13%)</td>
<td>122 (8%)</td>
<td></td>
<td>1491</td>
</tr>
</tbody>
</table>

Water Quality

Prior to 1980, City water was unfiltered and supplied from reservoirs at Bell Canyon and York Creek. In December 1980 the Louis Stralla Water Plant was completed and higher quality water meeting State standards was provided from Bell Canyon. The Lower Reservoir, with a smaller storage capacity, was abandoned as a potable water source and is currently used for irrigation purposes.

Currently water is filtered and disinfected at the Bell Canyon plant and at the well site. This water meets all State standards, and is low in iron and manganese.

While non-corrosive, Bell Canyon water is considered aggressive, and treatment is required to reduce lead and copper deterioration at the customer’s tap. Under the new EPA Surface Water Treatment Rule an upgraded plant filter is being considered to meet more stringent standards mandated by the State.

Goals, Policies & Recommended Improvements

Guiding Policies

9.2.1 Approval of new development shall be contingent upon the ability of the City to provide water without exceeding the safe annual yield of its water supply system.

The City has established an annual growth rate not to exceed 17 dwelling units. Future growth will depend upon the ability to secure a reliable source of water. Existing supplies have been established at 1800 AF with a groundwater component limited to 20 percent or 360 AF. The City
Council established 20% as the maximum amount of water conservation that would be reasonable in the event that the City’s groundwater source was not available for some reason. The Stonebridge Well can supply this groundwater need by using 75 percent of the production capacity assuming a 20% downtime factor. Bell Canyon reservoir supplies a safe annual yield of 1440 AF based on data compiled over the last 12 years.

9.2.2 Develop new sources of water supply adequate to serve the projected year 2010 population.

With the addition of 166 affordable residential units recently completed or under construction the total number of units inside the City will be about 2623 units. Based on the average annual residential consumption plus a 30% added factor for accompanying commercial expansion, each additional dwelling unit will require 0.40 AF of water. From Table 9-3 it can be seen that demand will equal supply before the year 2000 based on a steady one percent growth. New sources will be required after 2789 dwelling units are served.

9.2.3 Adopt and implement water conservation measures as a means of extending the capabilities of the City’s water supply.

Adoption of a Toilet Retrofit Ordinance to convert high-use fixtures to low-flow fixtures and a Water-Efficient Landscape Ordinance to require water-conserving xeriscapes could increase the number of available water connections. It is estimated that 1600 residential units could be converted to low-flow fixtures saving about 50 AF of water per year which could serve 125 units.

9.2.4 Prohibit water service to new customers outside the City unless a potential threat to health and safety can be demonstrated.

Outside connections beyond the City limits have been prohibited by City policy since 1964 unless a health and safety issue can be shown. Currently about 20 percent of metered water goes to outside customers. Fire service line extensions are provided to commercial and industrial users outside the City when adjacent to City water mains for emergency use only.

Implementing Policies

9.2.5 Implement the following water system improvements:

- Develop a 2.7 MG water storage tank within the City limits to meet peak day demands and emergency fire fighting needs.

- Replace obsolete, undersized water mains to provide more efficient circulation, higher pressures, and lower pipe losses during heavy demand periods.
• Continue service of water mains and meter replacements to reduce unaccounted-for water losses.

• Drill new wells to provide additional supplemental sources during drought conditions and to satisfy increased demand beyond the year 2000 should the 20% limit for ground water be raised.

9.2.6 Pursue with Napa County the possibility of obtaining future water supplies from the Napa River and other sources.

A county-wide study has identified diversions from the Napa River during winter runoff as a potential source of water. Due to the high cost and complexity of this project it would have to involve the City of Napa and other municipalities. Such a project would be long-term in nature, starting with a water rights application. No water would be available before the year 2010. Sources outside Napa County are not considered reliable at this time.

9.2.7 Explore the possibility of using lower reservoir water to reduce the use of wells and Bell Canyon Reservoir.

The lower reservoir could supply up to 235 AF of irrigation water to customers if a distribution system and suspended solids filter were in place. This water could replace irrigation now using treated water.

<table>
<thead>
<tr>
<th>Year</th>
<th>Units</th>
<th>Demand (AF)</th>
<th>Reservoir (AF)</th>
<th>Well (20%) (AF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>2412</td>
<td>1657</td>
<td>1326</td>
<td>331</td>
</tr>
<tr>
<td>1993</td>
<td>2623</td>
<td>1725</td>
<td>1380</td>
<td>345</td>
</tr>
<tr>
<td>1994</td>
<td>2640</td>
<td>1732</td>
<td>1386</td>
<td>346</td>
</tr>
<tr>
<td>1995</td>
<td>2657</td>
<td>1739</td>
<td>1391</td>
<td>348</td>
</tr>
<tr>
<td>1996</td>
<td>2674</td>
<td>1746</td>
<td>1397</td>
<td>349</td>
</tr>
<tr>
<td>1997</td>
<td>2691</td>
<td>1753</td>
<td>1402</td>
<td>351</td>
</tr>
<tr>
<td>1998</td>
<td>2708</td>
<td>1760</td>
<td>1408</td>
<td>352</td>
</tr>
<tr>
<td>1999</td>
<td>2725</td>
<td>1767</td>
<td>1414</td>
<td>353</td>
</tr>
<tr>
<td>2000</td>
<td>2742</td>
<td>1774</td>
<td>1419</td>
<td>355</td>
</tr>
<tr>
<td>2001</td>
<td>2759</td>
<td>1781</td>
<td>1425</td>
<td>356</td>
</tr>
<tr>
<td>2002</td>
<td>2776</td>
<td>1788</td>
<td>1430</td>
<td>358</td>
</tr>
<tr>
<td>2003</td>
<td>2793</td>
<td>1795</td>
<td>1436</td>
<td>359</td>
</tr>
<tr>
<td>2004</td>
<td>2810</td>
<td>1802*</td>
<td>1442</td>
<td>360</td>
</tr>
<tr>
<td>2005</td>
<td>2827</td>
<td>1809*</td>
<td>1447</td>
<td>362</td>
</tr>
<tr>
<td>2006</td>
<td>2844</td>
<td>1816*</td>
<td>1453</td>
<td>363</td>
</tr>
<tr>
<td>2007</td>
<td>2861</td>
<td>1823*</td>
<td>1458</td>
<td>365</td>
</tr>
<tr>
<td>2008</td>
<td>2878</td>
<td>1830*</td>
<td>1464</td>
<td>366</td>
</tr>
<tr>
<td>2009</td>
<td>2895</td>
<td>1837*</td>
<td>1470</td>
<td>367</td>
</tr>
<tr>
<td>2010</td>
<td>2912</td>
<td>1844*</td>
<td>1475</td>
<td>369</td>
</tr>
</tbody>
</table>

Note: * Exceeds total system supply of 1800 AF and current well supply of 360 AF.
Source: City of St. Helena
9.3 SEWER

Collection System

Over 2,000 customers are served by the City’s sewerage system, all within the present City limits. About 300 dwelling units and 3 wineries are on individual disposal systems, most of them remote from a City sewer. Except for the original town site which has 4” sewers, most of the City is served by adequately sized pipes. During the winter rainy season surface and ground water infiltration increases flows by 3 to 4 fold. One lift station exists at the Crinella development in the northeast quadrant east of Main Street. The remaining system operates by gravity.

Treatment Plant

Normal dry weather flows average 0.38 MGD at the treatment plant or about 76% of design capacity. The plant is a low maintenance integrated pond system which stores treated effluent during the dry months and disposes by spray irrigation onto a 90-acre grass field. When the pond storage capacity is exceeded during the winter rains, treated effluent can discharge to the Napa River if a 50:1 dilution ratio is attainable. Because the Napa River fluctuates with the rains the discharge periods are limited. The NPDES permit currently limits the treatment plant to 0.5 MGD capacity until the year 2010. An EIR will be required to expand the capacity beyond 0.5 MGD along with Water Resources Control Board approval.

Goals, Policies and Recommended Improvements

Guiding Policies

9.3.1 Provide adequate sewage treatment capacity at the City treatment plant to meet the needs of population growth permitted under the City’s Growth Management System.

Table 9-4 projects the treatment required at the wastewater plant assuming that all new units will connect to the City sewer. Some residential units in the Woodlands and Watershed areas may be too remote to connect but this represents a small percentage of total growth. It can be seen from these projections that expansion of the plant should be undertaken by year 2000 when the unused capacity drops below 10%.

9.3.2 Require all new units, except those in Woodlands and Watershed Districts, on parcels less than 2 acres to connect to the City sewer. All existing units within 200 feet of an existing sewer shall connect to the City sewer whenever feasible. Many of the residential units cannot expand without abandoning the on-site septic system and connecting to the sewer which may, in some cases, require an extension of the sewer.

9.3.3 Require extension of City sewer to areas with limited sewerage capacity prior to approval of future growth in these areas.
Presently the areas shown in Exhibit 9-3 have limited sewerage capacity. Extension of trunk lines along Sulphur Springs Avenue, El Bonita Avenue, Grayson Avenue and Vidovich are required. Sewers do not exist north of Pratt Avenue or northwest of Hudson and Madrona Avenue.

9.3.4 Reduce pumping costs and sewer capacity by remedying sewer system infiltration problems.

Infiltration from groundwater and inflow from surface water is very evident during the rainy season, reducing carrying capacity in the sewers and increasing the pumping costs at the treatment plant. Field surveys have located several areas in the collection system, usually where high ground water exists, that require waterproofing. Some of these problem sewers will be replaced by development in the area north of Pope Street. Others should be corrected under the City’s capital improvement program where serving the existing population.
TABLE 9-4

PROJECTED TREATMENT AT WASTEWATER TREATMENT PLANT

<table>
<thead>
<tr>
<th>Year</th>
<th>Residential Dwelling Units</th>
<th>Effluent (MGD)</th>
<th>Treated % of Design Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>1919</td>
<td>0.380</td>
<td>76</td>
</tr>
<tr>
<td>1993</td>
<td>2053</td>
<td>0.407</td>
<td>82</td>
</tr>
<tr>
<td>1994</td>
<td>2075</td>
<td>0.411</td>
<td>82</td>
</tr>
<tr>
<td>1995</td>
<td>2097</td>
<td>0.415</td>
<td>83</td>
</tr>
<tr>
<td>1996</td>
<td>2119</td>
<td>0.419</td>
<td>84</td>
</tr>
<tr>
<td>1997</td>
<td>2141</td>
<td>0.423</td>
<td>85</td>
</tr>
<tr>
<td>1998</td>
<td>2163</td>
<td>0.427</td>
<td>85</td>
</tr>
<tr>
<td>1999</td>
<td>2185</td>
<td>0.431</td>
<td>86</td>
</tr>
<tr>
<td>2000</td>
<td>2207</td>
<td>0.435</td>
<td>87</td>
</tr>
<tr>
<td>2010</td>
<td>2427</td>
<td>0.476</td>
<td>95</td>
</tr>
<tr>
<td>2020</td>
<td>2647</td>
<td>0.517</td>
<td>104</td>
</tr>
</tbody>
</table>

Note: The numbers in the table assume all new units (17 du/yr.) will connect to available City sewer (no septic systems) and 5 existing units per year will convert from septic to sewer. The projections assume that a new residential unit will generate 200 gallons per day, which includes a 30% allowance for commercial growth. Existing units generate 140 gpd.
9.4 STORM DRAINAGE/FLOODING

The City is divided into two major watersheds, York Creek and Sulphur Creek, which eventually drain easterly to the Napa River located at the eastern City Boundary.

York Creek

Most of the runoff north of Pratt Avenue is conveyed to York Creek via a series of culverts and ditches and finally to the river north of the Pratt Avenue bridge. This basin contains about 300 acres including the City reservoir west of the City. The stream channel contains the winter runoff and is not subject to flooding. No floodplain study is available along the two miles of stream within the City although potentially developable land designated along the stream’s reach is very minimal.

Sulphur Creek

Sulphur Creek is a major tributary draining 9 square miles of land, 85% of which is west of and outside the City. West of Main Street the stream is wide and meanders through predominantly open areas. East of the Main Street bridge the channel is incised and carries faster flows within its banks. Most of the City’s underground storm drains for the area north of the Creek discharge into this watercourse. A small tributary, Spring Creek, originates west of town and flows through some vineyards until being contained in an open channel along Spring Street.

No floodplain study exists along the two miles of stream upstream from its confluence with the river. The stream has flooded several times, and in 1986 caused considerable damage during a major flood event. Flooding occurred in 1986 at its confluence with the Napa River and upstream from the Main Street bridge.

A 1987 hydrologic analysis of the watershed by a private consultant concluded that ultimate development within the City, which would double the existing impervious area, the total increase in peak runoff discharge would equal 20 cubic feet per second compared to a total basin discharge of 3,690 cfs. Based on this study, projected development would not have a significant impact on peak flows.

Napa River

The Napa River receives runoff from the previously mentioned creeks along with several major drains and the Napa Valley north of the City. During the winter rains the river carries a considerable flow and has been known to flood during major storm events. A floodplain study performed by FEMA in 1980, and revised in 1987, depicts several areas subject to inundation during a 100-year storm. Most of the affected area within the City is used for agriculture except a large mobile home park north of Pope Street. This development which has no gravity outlet uses a privately maintained system of pumps and storm drains which flow easterly to the river during a storm.
Miscellaneous Drains

A major 60" storm drain is installed in the Vintage Avenue area to serve the southern portion of the City and extends west of Main Street. This drain, which outfalls to the Napa River, has been designed to serve the watershed south of Dowdell, north of Sulphur Springs Avenue and west to the City limits.

A 42" storm drain has been partially installed along the Hunt Avenue extension to the river, and will eventually serve the area north of Hunt Avenue to Adams Street east of the railroad, about 75 acres in area.

Fulton Avenue east of the railroad is subject to flooding during heavy runoff. The existing drainage ditch cannot accommodate flows and sheet flooding occurs south of Fulton about 2,000 feet west of the Napa River.

Goals, Policies and Standards

Guiding Policies

9.4.1 New development should provide adequate drainage improvements to handle generated storm runoff from the site to the nearest major watershed. The watersheds include York Creek, Sulphur Creek and the Napa River.

9.4.2 If a City storm drain is available, the developer should participate in the funding to the extent it benefits the development.

9.4.3 Extension of existing downstream drains which have adequate capacity should be completed at the developer's expense with future reimbursement for oversizing costs at the time of connection by others.

9.4.4 Grading and earth filling within the designated 100-year floodway should not be permitted except for public streets or bridges.

9.4.5 Encroachments into the 100-year floodway should not result in any increase in flood levels during the occurrence of the base flood discharge.

Implementing Policies

9.4.6 Standards for subdivisions should include the following:

1. All preliminary subdivision proposals shall identify the flood hazard area and the elevation of the base flood.

2. All final subdivision plans will provide the elevation of proposed structure(s) and pads. If the site is filled above the base flood, the final pad elevation shall be certified by a registered civil engineer or surveyor and provided to the floodplain administrator.
3. All subdivision proposals shall be consistent with the need to minimize flood damage.

4. All subdivision proposals shall have public utilities and facilities such as sewer, gas, electrical and water systems located and constructed to minimize flood damage.

5. All subdivisions shall provide adequate drainage to reduce exposure to flood hazards.

9.5 SOLID WASTE

Existing Setting

Due to its geography and the locations of disposal sites in the county, Napa County is divided into three disposal zones each serving a distinct watershed area. Zone 1 includes the City of Napa and the southern portion of the County’s unincorporated area; waste is disposed of in the American Canyon landfill, located within the zone. Zone 2 is entirely within the unincorporated area of the County and includes the area around Lake Berryessa; waste is disposed of in the Berryessa Landfill. Zone 3 includes the Cities of Calistoga, St. Helena and Yountville, and the surrounding up valley unincorporated areas of the County; waste is disposed of in the Clover Flat Landfill, located within the zone.

The Clover Flat Landfill is located approximately four miles southeast of Calistoga. It is operated by the Clover Flat Landfill, Inc. on land leased by the County. The Clover Flat Landfill receives approximately 100 tons of waste per day, and with pending expansion, is expected to reach capacity in 33 years. Collection of waste generated in St. Helena is also serviced by Upper Valley Disposal Service (UVDS). The waste stream is made up of 23 percent residential generators, 65 percent commercial and industrial generators, and 12 percent self-haul generators. All wastes collected by UVDS are taken to the Clover Flat Landfill. In 1990, the City of St. Helena disposed of approximately 12,396 tons of waste.

Integrated Waste Management Act

The California Integrated Waste Management Act of 1989 (commonly referred to as AB 939) requires all California Cities and Counties to prepare Source Reduction and Recycling Elements (SRR). The primary function of the SRR Element is to establish a local plan to reduce solid waste generation and disposal through source reduction, recycling and composting by 25 percent by 1995 and by 50 percent by the year 2000.

Source Reduction and Recycling Element

The City of St. Helena has adopted a Source Reduction and Recycling Element in conjunction with the jurisdictions in Zone 3 to meet the requirements of AB 939. Copies of the complete document are available at City Hall for reference.
The Source Reduction and Recycling Element evaluates and selects programs that reduce the quantity of waste generated, selects various composting activities, and identifies special non-hazardous wastes that require special handling, treatment or disposal activities. Educational objectives and activities to increase public awareness target residents, businesses, public agencies, and schools.

Guiding Policies

9.5.1 Support the implementation of the goals and objectives set forth in the City’s Source Reduction and Recycling Element.

9.6 SCHOOLS

St. Helena Unified School District

The St. Helena Unified School District (SHUSD) provides educational services to the City of St. Helena. The District encompasses 204 square miles, including not only the City, but extending south through Rutherford and Oakville to Yount Mill Road, and Mt. Veeder, north to Both-Napa Valley State Park and Deer Park, east to Lake Berryessa and the Yolo County line, and west to the Sonoma County line.

SHUSD serves students from three main campuses in St. Helena: St. Helena Elementary School on Adams Street at Oak Street; Robert Louis Stevenson Middle School on Hillview Place; and St. Helena High School on Grayson Avenue. Other small schools are the Madrone Continuation High School, located near the High School campus, and Monticello Elementary at Lake Berryessa, which was closed for the 1992-93 school year.

As of October, 1991, the District had 1,460 students in grades K-12. Approximately 28 percent of the students were Hispanic, with many of these students being Limited English Proficient (LEP). Most students graduating from the independent K-8 Pope Valley Union and Howell Mountain School districts choose to attend high school in St. Helena.

The SHUSD Board of Trustees considers class size to be a key policy concern, and has established optimum class-size standards that are lower than most neighboring districts and State of California recommended averages. The District strives to maintain student/teacher ratios that are among the lowest in the nation. The District’s goal is to provide sufficient space for basic academic subject areas, vocational training and physical education, as well as for visual and performing arts and exploratory courses geared toward new technologies, and extra-curricular activities such as sports, student government, and clubs. The District has adopted the following vision statement for children as a guide to the District’s services:

Napa County Vision for Children

All children in Napa County will reach adulthood having experienced a positive sense of self, a nurturing family, physical and mental wellness, a quality education with family participation, and a caring and supportive multicultural community. By having these experiences, Napa County’s children will have the opportunity to become people of integrity who are
caring and committed community members with a passion for living
giving, and learning.

School facilities play an important role in St. Helena. Existing school facilities are used regularly by groups and individuals for both planned and casual activities, including recreation, extended education, and community events.

Anticipated Growth

From 1986 to 1991, SHUSD experienced a 2.8 percent average annual increase in enrollment. The rapid growth in enrollment during this period caused a strain on district facilities. This strain was due in part to the District's inability to accurately project such enrollment when the City and County projections were for 1% growth, and the City had a building moratorium in effect. Conditions which contributed to the rapid increase in enrollment and its unpredictability include:

- single family homes inhabited by multiple families,
- increased housing in unincorporated areas,
- undocumented immigration,
- rollover of traditional second homes into primary residences,
- high ratio of school age children in affordable housing, and
- almost 5% growth due to continuing incoming Interdistrict Agreements.

Recent District projections calculated by two different means (a weighted cohort survival method and a non-weighted projection using previous enrollment data) indicate that enrollment growth will continue at virtually the same 2.8 percent annual rate from 1992 to 1997. The total enrollment of 1,510 in Spring, 1992 included 35 Special Education students and a net gain of 71 students on Interdistrict (IDA) Transfers. Assuming the IDA number remains the same, the adjusted growth rate would be 2.4 percent annually. District projections to the year 2010, show school enrollment increasing 53% to 2,314 students. These projections exceed predictions for Napa County growth by the State (1.4%), ABAG (1%), and the City and County planning departments (1%).

Part of the reason for enrollment increasing faster than the general population is related to family characteristics in new development. For example, based on recent occupancy, the 56-unit Hunt's Grove affordable housing project completed in 1992 will impact local schools with a growth factor of 1.27 school-age children per unit. This figure is more than double the state average per household. The District projects that further stress on school facilities will occur in 1993 when the 80-unit Stonebridge project is completed. Given the similar nature of the projects, it is expected that the impact will again be a factor of 1.27 school-age children per unit.

Based on its enrollment projections, the SHUSD has identified a number of objectives relating to curriculum and improvements and expansion of existing facilities. In addition, the District has identified future need for an additional 8-acre elementary school site and additional acreage to expand the high school to 21 acres.
School District Relationship to General Plan

The SHUSD is the agency responsible for meeting future needs of the St. Helena schools, and, legally is not required to follow the policies of the General Plan. In practice, however, the District and the City work cooperatively to meet their mutual objectives. While having limit power over education in the community, the General Plan addresses schools as a policy issue because of its implications for quality of life and community land use and development patterns. Effective planning for the future logically involves mutual consideration by the District and the City. St. Helena has a history of community effort to support schools evidenced by past bond issues, parent involvement in classrooms, fundraising efforts and building projects, the St. Helena Public Schools Foundation, business donations, local scholarship support and individual bequests.

Guiding Policies

9.6.1 Support high quality education for St. Helena’s children as a community priority.

9.6.2 Support and cooperate with the St. Helena Unified School District and others in locating and reserving appropriate sites for new schools.

District-owned property directly west and contiguous to St. Helena High School, at the southeast corner of the intersection of Grayson and South Crane, has been reserved as the site of a future school. As residential areas develop on the east side of Main Street it may become necessary to consider an additional school site.

A second potential school site has been identified north of the Adams Street extension (refer to the General Plan Land Use map). The location, size, and configuration of the site are conceptual at this time and respond to proposed land use and circulation patterns. The exact site location, size and configuration will be determined by SHUSD at a future date. If the proposed school site is not required or is needed in an alternate location, as determined by the School District, the land use of the site will revert to agriculture or park uses.

9.6.3 Support and cooperate with the St. Helena Unified School District in its efforts to ensure adequate financing for new school facilities. To this end, the City shall cooperate with the School District in the collection of school facility development fees from new residential and non-residential development, and will work with the District to identify, establish, and implement additional measures that may be necessary to adequately finance school facilities in the City.

9.6.4 Promote the efficient use of school facilities for before- and after-hour programs that both school age children and the community at large.

9.6.5 Consider the safety of children as pedestrians and on bicycles, in bus-boarding areas, and during their arrival and departure from school.
Wherever possible, encourage the practice of children walking or cycling to and from school for health and environmental reasons.

Accordingly, the City shall consult and cooperate with the School District when changing or designing major artery traffic flow near school sites, street parking and parking lots near schools, sidewalks in all residential areas, signals and other traffic control measures which affect children's access to schools.

Implementing Policies

9.6.6 Approval of residential, commercial, or industrial development may be conditioned upon the mitigation of the impact of such development on the St. Helena Unified School District's ability to serve school age children.

Approval of traffic circulation patterns for vehicles and pedestrians may be conditioned upon the mitigation of the impact on the safe transit of children to and from school.